Embedding intersection types into multiplicative linear logic

نویسنده

  • Jean-Marie Madiot
چکیده

Intersection types characterize properties on lambda-terms such as head, weak and strong normalization. One can establish relations between intuitionistic logic and intersection types with idempotence. Here we consider a type system without idempotence and we underline common traits with intuitionistic multiplicative linear logic. We analyse head normalization to try and get properties such as completeness, soundness and subject reduction or expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-intuitionistic Boolean Bunched Logic

We formulate and investigate a bi-intuitionistic extension, BiBBI, of the well known bunched logic Boolean BI (BBI), obtained by combining classical logic with full intuitionistic linear logic as considered by Hyland and de Paiva (as opposed to standard multiplicative intuitionistic linear logic). Thus, in addition to the multiplicative conjunction ∗ with its adjoint implication —∗ and unit ⊤∗,...

متن کامل

Bi - intuitionistic Boolean Bunched Logic June , 2014

We formulate and investigate a bi-intuitionistic extension, BiBBI, of the well known bunched logic Boolean BI (BBI), obtained by combining classical logic with full intuitionistic linear logic as considered by Hyland and de Paiva (as opposed to standard multiplicative intuitionistic linear logic). Thus, in addition to the multiplicative conjunction ∗ with its adjoint implication —∗ and unit ⊤∗,...

متن کامل

Simulating Computations in Second Order Non-Commutative Linear Logic

Lincoln, Scedrov and Shankar proved undecidability of intuitionistic second order multiplicative commutative linear logic by embedding LJ2 into this logic. Emms did the same for intuitionistic second order non-commutative linear logic. Recently, Lafont and Scedrov demonstrated undecidability of classical second order multiplicative commutative linear logic. As for classical second order non-com...

متن کامل

A Call-By-Push-Value FPC and its interpretation in Linear Logic

We present and study a functional calculus similar to Levy’s CallBy-Push-Value lambda-calculus, extended with fix-points and recursive types. We explain its connection with Linear Logic by presenting a denotational interpretation of the language in any model of Linear Logic equipped with a notion of embedding retraction pairs. We consider the particular case of the Scott model of Linear Logic f...

متن کامل

Call-By-Push-Value from a Linear Logic Point of View

We present and study a simple Call-By-Push-Value lambdacalculus with fix-points and recursive types. We explain its connection with Linear Logic by presenting a denotational interpretation of the language in any model of Linear Logic equipped with a notion of embedding retraction pairs. We consider the particular case of the Scott model of Linear Logic from which we derive an intersection type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010